On semi-global invariants for focus–focus singularities
نویسندگان
چکیده
منابع مشابه
On semi-global invariants for focus-focus singularities
This article gives a classification, up to symplectic equivalence, of singular Lagrangian foliations given by a completely integrable system of a 4-dimensional symplectic manifold, in a full neighbourhood of a singular leaf of focus-focus type.
متن کاملOn singularities, horizons, invariants, and the
Antoci et al. have argued that the horizons of the boost-rotation, Kerr and Schwarzschild solutions are singular, having shown that a certain invariantly-defined acceleration scalar blows up at the horizons. Their examples do not satisfy the usual definition of a singularity. It is argued that using the same term is seriously misleading and it is shown that such divergent functions are natural ...
متن کاملLyubeznik’s Invariants for Cohomologically Isolated Singularities
In this note I give a description of Lyubeznik’s local cohomology invariants for a certain natural class of local rings, namely the ones which have the same local cohomology vanishing as one expects from an isolated singularity. This strengthens our results of [BB04] while at the same time somewhat simplifying the proofs. Through examples I further point out the bad behavior of these invariants...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
On Global Degree Bounds for Invariants
Let G be a linear algebraic group over a field K of characteristic 0. An integer m is called a global degree bound for G if for every linear representation V the invariant ring K[V ] is generated by invariants of degree at most m. We prove that if G has a global degree bound, then G must be finite. The converse is well known from Noether’s degree bound.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology
سال: 2003
ISSN: 0040-9383
DOI: 10.1016/s0040-9383(01)00026-x